Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Obes Rev ; 22(5): e13225, 2021 05.
Article in English | MEDLINE | ID: covidwho-1117403

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) has been an increasingly prevalent target for investigation since its discovery 20 years ago. The finding that it serves a counterregulatory function within the traditional renin-angiotensin system, implicating it in cardiometabolic health, has increased its clinical relevance. Focus on ACE2's role in cardiometabolic health has largely centered on its apparent functions in the context of obesity. Interest in ACE2 has become even greater with the discovery that it serves as the cell receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), opening up numerous mechanisms for deleterious effects of infection. The proliferation of ACE2 within the literature coupled with its dual role in SARS-CoV-2 infection and obesity necessitates review of the current understanding of ACE2's physiological, pathophysiological, and potential therapeutic functions. This review highlights the roles of ACE2 in cardiac dysfunction and obesity, with focus on epicardial adipose tissue, to reconcile the data in the context of SARS-CoV-2 infection.


Subject(s)
Adipose Tissue/enzymology , Angiotensin-Converting Enzyme 2/physiology , COVID-19/enzymology , Obesity/enzymology , Pericardium/enzymology , SARS-CoV-2 , COVID-19/epidemiology , Cardiovascular Diseases/enzymology , Comorbidity , Humans , Inflammation/enzymology , Inflammation/virology , Obesity/epidemiology , Recombinant Proteins , Renin-Angiotensin System/physiology , SARS-CoV-2/metabolism
2.
Metabolism ; 113: 154401, 2020 12.
Article in English | MEDLINE | ID: covidwho-856999

ABSTRACT

BACKGROUND & AIMS: Angiotensin converting enzyme (ACE)-2 is a modulator of adipose tissue metabolism. However, human data of adipose ACE-2 is rarely available. Considering that, ACE-2 is believed to be the receptor responsible for cell entry of SARS-CoV-2, a better understanding of its regulation is desirable. We therefore characterized the modulation of subcutaneous adipose ACE-2 mRNA expression during weight loss and the impact of ACE-2 expression on weight loss induced short- and long-term improvements of glucose metabolism. METHODS: 143 subjects (age > 18; BMI ≥ 27 kg/m2) were analyzed before and after a standardized 12-week dietary weight reduction program. Afterwards subjects were randomized to a 12-month lifestyle intervention or a control group (Maintain-Adults trial). Insulin sensitivity (IS) was estimated by HOMA-IR (as an estimate of liver IS) and ISIClamp (as an estimate of skeletal muscle IS). ACE-2 mRNA expression (ACE-2AT) was measured in subcutaneous adipose tissue before and after weight loss. RESULTS: ACE-2AT was not affected by obesity, but was reduced in insulin resistant subjects. Weight loss resulted in a decline of ACE-2AT (29.0 (20.0-47.9) vs. 21.0 (13.0-31.0); p = 1.6 ∗ 10-7). A smaller reduction of ACE-2 AT (ΔACE-2AT) was associated with a larger improvement of ISIClamp (p = 0.013) during weight reduction over 3 months, but not with the extend of weight loss. The degree of changes in insulin resistance were preserved until month 12 and was also predicted by the weight loss induced degree of ΔACE-2AT (p = 0.011). CONCLUSIONS: Our data indicate that subcutaneous adipose ACE-2 expression correlates with insulin sensitivity. Weight loss induced decline of subcutaneous adipose ACE-2 expression might affect short- and long-term improvement of myocellular insulin sensitivity, which might be also relevant in the context of ACE-2 downregulation by SARS-CoV-2. TRIAL REGISTRATION: ClinicalTrials.gov number: NCT00850629, https://clinicaltrials.gov/ct2/show/NCT00850629, date of registration: February 25, 2009.


Subject(s)
Adipose Tissue/metabolism , Angiotensin-Converting Enzyme 2/genetics , COVID-19/prevention & control , Weight Loss/physiology , Weight Reduction Programs , Adipose Tissue/enzymology , Adult , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , Caloric Restriction , Combined Modality Therapy , Exercise Therapy , Female , Gene Expression Regulation, Enzymologic , Humans , Insulin Resistance/physiology , Male , Middle Aged , Obesity/therapy , Overweight/therapy , Pandemics , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL